Электрофорез метод изучения клеток

Двумерный электрофорез

  • Электрофорез двумерный — способ разделения сложных смесей белков, в котором сочетаются электрофорез белков в полиакриламидном геле с додецилсульфатом натрия и изоэлектрическое фокусирование. Этот метод увеличивает разрешение одномерного гель-электрофореза, а также позволяет исследовать неканонические структуры, возникающие в сверхспирализованной молекуле кольцевой ДНК. Оценить размер молекул помогут маркеры молекулярных масс. Последующая детекция на гельдокументирующих системах позволит визуализировать результат.

Реактивы для горизонтального электрофореза: агарозы, маркеры длин фрагментов ДНК, красители интеркалирующие для визуализации НК, красители для нанесения образцов на гель, буферы для электрофореза нуклеиновых кислот.

Готовые полиакриламидные гели удобны в применении, разработаны под различное количество образцов (от 1 до 26 лунок) и адаптированы к различным по размеру электрофорезным камерам. Готовые стрипы для двумерного электрофореза доступны в широком спектре диапазонов pH, длиной от 7 до 24 см.

Для автоматического препаративного электрофореза — при отделении необходимого фрагмента автоматически — используются системы препаративного электрофореза для разделения и выделения ДНК/РНК/белков серии Pippin, производства Sage Science.

Другие типы электрофореза: вертикальный, горизонтальный, капиллярный, капиллярный на чипе.

Связанные понятия

Дот-блот — техника, используемая в молекулярной биологии для детекции различных макромолекул, таких как нуклеиновые кислоты или белки. Данная техника является некоторым упрощением вестерн-блота: образцы, содержащие исследуемые макромолекулы наносятся сразу на нитроцеллюлозную или PVDF-мембрану, минуя стадию предварительного электрофореза в ПААГ (в частности при работе с белками).

Тканевая матрица (ТМА, tissue microarray, тканевой мастер-блок, множественно-тканный парафиновый блок ) — в медицине, парафиновый блок-реципиент в который встроены множественные тканевые цилиндры, извлеченные из стандартных парафиновых блоков-доноров и организованные в виде упорядоченной последовательности (матрицы). ТМА позволяют сохранять и использовать ценные тканевые ресурсы более эффективно и экономично для гистохимического, иммуногистохимического (ИГХ) и молекулярного исследований.

MTT-тест — колориметрический тест для оценки метаболической активности клеток. НАДФ-H-зависимые клеточные оксидоредуктазные ферменты могут, при определенных условиях, отражать количество жизнеспособных клеток. Эти ферменты способны восстанавливать тетразолиевый краситель 3-(4,5-диметилтиазол-2-ил)-2,5-дифенил-тетразолиум бромид в нерастворимый формазан, который имеет пурпурное окрашивание. Другие близкородственные тетразолиевые красители: XTT, MTS и WST, которые используются в связи с промежуточным.

Электрофорез и хроматография

В процессе проведения биохимического анализа при клинико-лабораторных исследованиях часто возникает необходимость предварительного выделения анализируемых веществ, отделения их от других компонентов, находящихся в исследуемом биологическом материале. Для этих целей чаще всего используются такие физико-химические методы, как электрофорез и хроматография.

Электрофорез. Под электрофорезом понимают процесс разделения заряженных частиц в электрическом поле. Многие биологически важные молекулы (белки, аминокислоты, нуклеиновые кислоты и др.) имеют в своем составе ионизирующие группы. Поэтому в биологических жидкостях (крови, лимфе и др.) они существуют в виде катионов и анионов. Помимо этого молекулы имеющие примерно одинаковый заряд могут отличаться молекулярными массами и отношением заряда к массе. На этих различиях и основано разделение ионов при движении их в растворе под действием электрического поля.

Скорость перемещения зависит от величины заряда, а также в ряде случаев, от размера и формы молекул. Так как в большинстве случаев молекулы отличаются по своим физическим и химическим свойствам то очень немногие из них имеют одинаковую электрофоретическую подвижность. Скорость движения частиц (см/с) при напряженности электрического поля 1 В/см называется электрофоретической подвижностью.

В зависимости от способа проведения электрофореза его делят на свободный или фронтальный, когда электрофоретическое разделение осуществляется в водной фазе и зональный, т.е. электрофорез на поддерживающей среде, когда разделение осуществляется на каком-либо инертном носителе (бумага, асбестовые пластины, целлюлоза, агаровый, крахмальный и полиакриламидный гели и др.).

Суть зонального электрофореза заключается в том, что раствор смеси веществ подлежащих разделению вводят на определенный участок носителя, пропитанного электролитом. Биологический материал, подлежащий электрофоретическому разделению, растворяют или суспензируют в буфере, чтобы обеспечить проведение электрического тока, этим же буфером насыщают и носитель. В растворе между электродами ток обусловлен ионами буфера и образца, в остальной части цепи — электронами. После снятия электрического поля ионы исследуемой смеси распределятся в соответствии с их электрофоретической подвижностью.

Читайте также:  Контактные линзы при беременности 1

В клинико-лабораторных исследованиях чаще используется зональный электрофорез на агаре или полиакриламидном геле. При наложении электрического поля частицы подлежащей разделению смеси придут в состояние направленного движения (будут двигаться к противоположно заряженному полюсу) и распределятся на носителе в виде отчетливых зон, которые легко обнаружить соответствующим аналитическим методом.

Важными характеристиками процесса зонального электрофореза являются градиент потенциала (В/см) и сила тока, приходящаяся на 1 см поперечного сечения полосы (плотность тока — мА/см).

Под градиентом потенциала понимают падение напряжения на 1 см носителя расположенного между электродами. В зависимости от градиента потенциала различают низковольтный электрофорез (5-15 В/см) и высоковольтный (более 50 В/см). Низковольтный электрофорез используется для разделения высокомолекулярных соединений типа белков, липопротеинов, гликопротеинов и др. Высоковольтный электрофорез используется для разделения низкомолекулярных веществ, типа аминокислот, их производных и др. Так как различие в заряде и молекулярной массе у таких веществ невелико, то нужен большой градиент потенциала, чтобы произошло эффективное разделение частиц. Так как при этом происходит значительное разогревание носителя, требуются специальные устройства для его охлаждения.

В зависимости от целей исследования электрофорез делят на аналитический и препаративный. В клинико-биохимических исследованиях используют обычно аналитический электрофорез, который позволяет работать с очень небольшими количествами исследуемого вещества и вести их количественное определение. В тех случаях, когда требуется получить большое количество изучаемого вещества, необходимого для дальнейших исследований используют препаративный вариант электрофореза.

В настоящее время для анализа биологических смесей все шире используется капиллярный электрофорез, при котором электрофоретическое разделение проводится в тонких капиллярах диаметром 25-200 мкм и длинной 10-100 см, заполненных буферным раствором. Под действием электрического поля (электрофорез проводится при напряжении 10000-30000 В) в капилляре создается электроосмотический поток, направленный к отрицательному полюсу, вместе с которым перемешаются и компоненты подлежащие разделению. В зависимости от заряда и массы скорость их движения будет различной, что приводит к фракционированию смеси. В концевой точке капилляра разделенные компоненты количественно определяют, используя различные оптические детекторы Близким к электрофорезу является метод изоэлектрического фокусирования, когда разделение белков и некоторых других анализируемых веществ идет в зависимости от величины их изоэлектрических точек.

Изоэлектрической точкой называют такое состояние белковой молекулы, при котором ее суммарный заряд равен нулю. В методе изоэлектрического фокусирования вначале между электродами устанавливают градиент рН с помощью веществ особой химической природы, получивших название амфолитов-носителей. Заряженные молекулы белков в ходе опыта будут двигаться в направлении противоположно заряженного электрода в соответствии с их действительным зарядом. Так как молекулы белков амфотерны, то при перемещении в градиенте рН их суммарный заряд будет меняться до тех пор, пока он не станет равным 0. Это произойдет в том месте, где величина рН будет равна изоэлектрической точке. Поэтому молекулы с одинаковой изоэлектрической точкой сконцентрируются в одной узкой зоне.

Хроматография. Это метод разделения и анализа многокомпонентных систем, основанный на использовании явлений сорбции и десорбции в динамических условиях. В процессе хроматографии происходит многократное повторение актов сорбции и десорбции вещества при перемещении его в потоке подвижной фазы вдоль неподвижного сорбента. Вещество подвижной фазы непрерывно вступает в контакт с новым участком сорбента и частью сорбируется, а сорбированное вещество контактирует со свежими порциями подвижной фазы и частично десорбируется.

Методы хроматографического анализа различаются: по агрегатному состоянию системы, в которой проводится разделение на газовую и жидкостную: по механизму разделения — на адсорбционную, распределительную, ионообменную, гель-хроматографию, аффинную и др. В ряде случаев разделение оказывается результатом нескольких одновременно протекающих процессов с различными механизмами. Это приводит к образованию хроматограммы смешанного типа, но один из процессов всегда является доминирующим (рис. 9 и 10, см. стр. 20-21).

Читайте также:  Заболевания иммунной системы › Клиника; Форпост

В газовой хроматографии подвижной фазой является газ. В зависимости от состояния неподвижной фазы газовая хроматография подразделяется на газо-адсорбционную, когда неподвижной фазой является твердый адсорбент и газо-жидкостную, когда неподвижной фазой является жидкость, или точнее пленка жидкости на поверхности частиц твердого адсорбента.

Жидкостная хроматография основана на адсорбции твердым веществом, играющим роль неподвижной фазы, определяемых компонентов, находящихся в растворенном состоянии.

В основе адсорбционной хроматографии лежит различная сорбируемость разделяемых веществ на твердом сорбенте в соответствии с их сродством к адсорбенту. При этом сорбируемость растворителя должна быть незначительной по сравнению с таковой анализируемой смеси. Процесс адсорбции зависит от свойства адсорбента, адсорбируемых соединений, растворителя. В зависимости от этих свойств вещества, подлежащие хроматографическому разделению, образуют адсорбционный ряд выражающий относительное адсорбционное сродство его членов к адсорбенту. Образующееся в колонке адсорбента зональное распределение веществ соответствует их положению в адсорбционном ряду. В качестве адсорбентов в адсорбционно-жидкостной хроматографии применяются органические и неорганические вещества: сахароза, крахмал, оксид алюминия, силикагель, активированный уголь и др.

Ионообменная хроматография основана на способности некоторых твердых веществ (ионитов) обмениваться ионами с подлежащими разделению веществами. Применяемые в ионообменной хроматографии иониты могут быть как органическими, так и неорганическими. Способность к ионному обмену определяется строением ионита, представляющего собой каркас, на котором закреплены активные группы (-СООН, -SO3H, — NH3Cl, -NH2Cl и др.). В зависимости от обмена катионов или анионов иониты делят на катиониты, аниониты и амфолиты. На принципах ионообменной хроматографии основано разделение аминокислот в аминокислотных анализаторах.

Распределительная хроматография основана на распределении компонентов разделяемой смеси между несмешивающимися фазами. Образующая неподвижную фазу жидкость находится на поверхности или в порах твердого носителя, на который наносится смесь веществ, подлежащих разделению. Затем создают ток подвижного растворителя. Чем лучше вещество растворимо в жидкости, играющей роль подвижной фазы, тем дальше оно продвинется по направлению тока растворителя. Вещества, плохо растворимые в подвижной фазе, расположатся ближе к точке нанесения. В зависимости от техники выполнения распределительная хроматография выполняется как колоночная, бумажная или тонкослойная. Методика распределительной хроматографии в колонках аналогична адсорбционной или ионообменной: вначале в колонку с носителем и закрепленным на нем неподвижной фазой вводят небольшой объем раствора смеси компонентов и затем промывают колонку подвижным растворителем.

При бумажной хроматографии разделение проводят на полосах бумаги, где роль неподвижной фазы играет вода, удерживаемая гидрофильными целлюлозными волокнами бумаги, а подвижной фазой является какой-либо органический растворитель. В каждый момент имеет место определенное перераспределение разделяемых компонентов между слоем органического растворителя и водой. В результате одни вещества движутся быстрее вслед за фронтом органического растворителя, другие в той или иной степени отстают, а некоторые вообще остаются на стартовой линии.

При тонкослойном варианте разделение идет в тонком слое носителя. Чаще всего для этих целей используются пластинки из силикагеля (например, Silufol) широко используемые для фракционирования липидов, аминокислот и других биосубстратов.

Гель-хроматография основана на различии в размерах и молекулярных массах белков и других макромолекул, являющихся важнейшей характеристикой молекулы. В качестве материала-носителя в гель- хроматографии используется сшитый декстран (сефадекс), сшитый полиакриламид (биогель Р) и агароза. Они получили широкое распространение как в аналитической, так и в препаративной лабораторной работе, а также в производстве, в химической и биологической промышленности.

Колонка с сефадексом действует по принципу «молекулярного сита». Молекулы большие, чем самые крупные поры разбухшего сефадекса не могут проникать в гранулы и сравнительно быстро проходят в жидкой фазе вне частиц геля, поэтому элюируются первыми. В настоящее время имеется большое число сефадексов, позволяющих разделить белки и полипептиды в диапазоне молекулярных масс от 700 до 800000 Да.

Читайте также:  Таблетки эргоферон взрослым инструкция по применению

Были разработаны также хроматографические материалы для разделения белков, путем связывания некоторых ионообменных групп с сефадексами. Полученные производные-ДЭАЭ-сефадекс, КМ-сефадекс и другие широко используются при хроматографии.

Аффинная хроматография или (биоспецифическая по сродству хроматография), основана на принципе специфического взаимодействия с особыми веществами (лигандами), закрепленными на носителе. Биологические макромолекулы обладают способностью обратимо связывать многие вещества. Например, ферменты образуют комплексы с субстратами, антитела взаимодействуют с антигенами, мРНК с комплементарной ДНК и т. д. Все эти взаимодействия строго специфичны. Образование специфических комплексов биологических макромолекул, способных в определенных условиях к диссоциации лежит в основе метода разделения получившего название аффинной хроматографии. Если закрепить один из компонентов этого комплекса на матрице, иммобилизовать его, то получится специфический сорбент для второго компонента (аффинат). Нерастворимые аффинаты готовят обычно путем ковалентного присоединения лиганда к нерастворимому носителю. Если смесь белков пропустить через колонку, заполненную таким аффинатом, то все молекулы, которые не обладают сродством к лиганду, закрепленному на носителе пройдут не задерживаясь, а белок имеющий сродство к аффинному лиганду будет адсорбироваться на колонке. Вымыть адсорбированный белок с колонки можно буферными смесями с измененной величиной рН, ионной силой, а также введением в состав элюента веществ, ослабляющих связи между белками и лигандами.

Одними из первых биоспецифических сорбентов, были антигены ковалентно связанные с нерастворимым носителем. Они были использованы для получения моноспецифических антител. Затем аналогичным путем были получены иммобилизованные ферменты. Стало возможным создание ферментных реакторов для получения различных веществ с использованием иммобилизованных ферментов.

Методы изучения клетки

Методы изучения клетки

  1. Оптическая микроскопия (увеличение – 8 000 раз, минимальный размер объекта – 0,2 мкм).
  2. Электронная микроскопия (увеличение – 100 000 раз, толщина препаратов не больше 500 х 10-8 см).
  3. Туннельная микроскопия – алмазная игла сканирует препарат. В момент перекрывания электронных облаков иглы и молекул препарата компьютер регистрирует скачок электрического тока. После анализа полученных данных компьютер строит изображение на экране дисплея (разрешение – отдельные атомы).
  4. Флуоресцентная микроскопия – для изучения микроструктур клетки используют специальные флуоресцентные красители и флуоресцентный микроскоп.
  5. Сканирующая микроскопия – использование сканирующего электронного микроскопа для получения объёмных изображений клетки.
  6. Фазово-контрастная микроскопия – получение изображений прозрачных объектов с помощью оптического микроскопа за счет сдвига фаз электромагнитных волн.
  7. Интерференционная микроскопия – наблюдение неокрашенных прозрачных структур и вычисление их сухой массы.
  8. Химические методы.
  9. Центрифугирование – разделение частей клеток, отличающихся по удельному весу, с помощью центрифуги; выделение разных компонентов клетки и их исследование.
  10. Хроматография – метод, основанный на разной скорости движения через адсорбент растворенных в специальном растворе веществ; при пропускании такого раствора через адсорбент каждое вещество из смеси передвигается на определенное расстояние в зависимости от своей молекулярной массы (в качестве адсорбента используют волокна фильтровальной бумаги, порошок целлюлозы и др.).
  11. Электрофорез в геле – разделение смеси веществ в растворе с помощью электрического тока.
  12. Метод меченных атомов – введение радиоактивного изотопа какого-либо химического элемента в состав вещества для того, чтобы проследить путь его превращений в клетке.
  13. Метод культуры клеток и тканей – изучение живых клеток под микроскопом вне организма (рост, размножение, выделение факторов роста, получение клеточных гибридов и др.).
  14. Метод рекомбинантных ДНК – изучение тонких механизмов клеточных процессов, функций генов путем встраивания ДНК исследуемых объектов в генетический аппарат бактерий или вирусов (генная биоинженерия).
  15. Методы нанобиотехнологии.

Кириленко А. А. Биология. ЕГЭ. Раздел «Молекулярная биология». Теория, тренировочные задания. 2017.

Ссылка на основную публикацию
Эксфорж инструкция по применению, отзывы и цены
Эксфорж в Москве Эксфорж Инструкция по применению Цена на Эксфорж от 1923.00 руб. в Москве Купить Эксфорж в Москве можно...
Эволюшн клиника на тверской
Клиника лазерной и эстетической косметологии "EVOLUTION" Эволюция красоты EVOLUTION – клиника лазерной и эстетической косметологии в самом центре Москвы. Гарантированный...
Эглонил инструкция по применению, отзывы, цена
НИИ флебологии в Москве. Научно-исследовательский институт по проблемам флебологии Что такое НИИ флебологии в Москве НИИ флебологии в Москве на...
Эктерицид; инструкция по применению, описание, вопросы по препарату
Инструкция по применению Эктерицид в виде раствора и спрея Эктерицид представляет собой антибактериальный и противопаразитный препарат, применяющийся при обработке ран...
Adblock detector